
ScrollDoodScroll
by Jayson Adams

Overview

This example demonstrates how to create a ªscrollable matrixºÐa scrollView containing a matrix of
cellsÐas used by applications such as Mail and PrintManager. The application's controller object
(of the Controller class) creates a matrix (of the NiftyMatrix class), fills it with cells (of the
CustomCell class) and places the matrix within a scrollView. The example also shows how to
place ªrulersº and controls within a scrollView. WriteNow, for example, places rulers above its
documentViews, constraining them to scroll horizontally with the document; when the user scrolls
the document vertically, the rulers do not scroll out of sight. WriteNow also places a ªscaleº popup
list in each document's lower right-hand corner, a good example of why you might want to place
controls within a scrollView.

Important classes within ScrollDoodScroll

NiftyMatrix class
The NiftyMatrix class differs from the Matrix class in that a niftyMatrix allows the user to rearrange
cells, as InterfaceBuilder lets you do with menu items. If a user control-clicks on a cell, that cell
will follow the mouse as the user drags it, leaving a ªwellº in its place. When the user releases the
cell over another cell in the matrix, the niftyMatrix places the control-dragged cell in that location
and slides the other cells up or down in order to fill the vacant spot.

CustomCell class
The CustomCell class demonstrates how, by overriding the drawInside:inView: method, you
can display graphics and/or text at different locations within the cell.

TileScrollView class
The TileScrollView class shows how overriding the tile method lets you add elements to a
scrollView. The tile method places a popup list to the right of the horizontalScroller, as
WriteNow does. It also places a ClipView instance above the contentView; this clipView has a
RulerView instance as its documentView (the rulerView displays a TIFF image of a ruler). The
tileScrollView implements the scrollClip:to: method, which lets it regulate the scrolling for its
clipViews. The tileScrollView instructs its clipViews how to scroll their documentViews by sending

them the rawScroll: message.

PostScriptView class
The tileScrollView has a PostScriptView , which displays a sample PostScript image, as its
documentView. The postScriptView images the PostScript code into an NXImage to speed
scrolling: whenever the user scrolls the postScriptView, the tileScrollView asks the postScriptView
to draw the portion that just became visible. With an NXImage of the PostScript image, the
postScriptView can composite the updateRects from the NXImage instead of reexecuting the
PostScript code that created the image. When the user asks that the image be scaled, the
postScriptView redraws the PostScript into the NXImage (with the new scale, of course), and then
composites the image into itself.

Controller class
The Controller class creates and initializes a niftyMatrix, fills it with cells and places the matrix
within a scrollView. It implements the methods the matrix sends on single- and double-clicks.
The controller also shows how to detect when a matrix has multiple cells selected. Lastly, it
initializes the tileScrollView.

Interesting Stuff

Controller
How to detect that a matrix has multiple cells selected

CustomCell
How to draw whatever you want within a cell

NiftyMatrix
How to implement autoscrolling
Using off-screen image buffers for fast drawing

PostScriptView
Using NXImage

TileScrollView
How to place WriteNow-style popup lists within a scrollView

How to implement rulers (views that scroll along with the documentView)

